Why Data Scientists Are Happy, but Concerned

 
 
By Dennis McCafferty  |  Posted 2017-05-03 Email
 
 
 
 
 
 
 
 
 
 

It's good to be a data scientist these days: The vast majority surveyed said they are either "happy" or "very happy" at work. They're also in high demand, with most getting contacted at least once a month for new job opportunities, according to a recent survey from CrowdFlower. However, the resulting "2017 Data Scientist Report" reveals that there is considerable room for improvement. For example, data scientists would prefer to spend their workdays building and modeling data and mining it for patterns. Instead, they spend the majority of their time on what they prefer to do the least: labeling, cleaning and organizing data. And they also indicated that a lack of access to good training data remains the biggest bottleneck for artificial intelligence (AI) and machine learning projects. (The term "training data" refers to labeled and/or structured data sets that are used to train algorithms to better process subsequent unlabeled or unstructured  data sets.) "[Data] quality levels are less predictable, and lack of access to high-quality training data is the single biggest reason AI projects fail," according to the report. "Given the massive proliferation of AI projects in virtually every sector across the globe, data scientists must work to offload routine work and streamline processes in the face of increasing data, increasing AI projects and a continued shortage of those with the necessary skills." A total of 179 global data scientists took part in the research.

 
 
 
 
 
Dennis McCafferty is a freelance writer for Baseline Magazine.
 
 
 
 
 
 

Submit a Comment

Loading Comments...
 
Manage your Newsletters: Login   Register My Newsletters